Hangzhou Lectures on Eigenfunctions of the Laplacian : Annals of Mathematics Studies
(2014)

Nonfiction

eBook

Provider: hoopla

Details

PUBLISHED
[United States] : Princeton University Press, 2014
Made available through hoopla
DESCRIPTION

1 online resource

ISBN/ISSN
9781400850549 MWT16341869, 1400850541 16341869
LANGUAGE
English
NOTES

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity

Mode of access: World Wide Web

Additional Credits