Deep Reinforcement Learning Hands-on
(2024)

Nonfiction

eBook

Provider: hoopla

Details

PUBLISHED
[United States] : Packt Publishing, 2024
Made available through hoopla
DESCRIPTION

1 online resource (716 pages)

ISBN/ISSN
9781835882719 MWT17558659, 1835882714 17558659
LANGUAGE
English
NOTES

Start your journey into reinforcement learning (RL) and reward yourself with the third edition of Deep Reinforcement Learning Hands-On. This book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the fi eld, this deep RL book will equip you with practical knowledge of RL and the theoretical foundation to understand and implement most modern RL papers. The book retains its approach of providing concise and easy-to-follow explanations from the previous editions. You'll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and its use cases. You'll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. If you want to learn about RL through a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition, is your ideal companion

Mode of access: World Wide Web

Additional Credits