Quantum Machine Learning and Optimisation in Finance
(2024)

Nonfiction

eBook

Provider: hoopla

Details

PUBLISHED
[United States] : Packt Publishing, 2024
Made available through hoopla
DESCRIPTION

1 online resource (494 pages)

ISBN/ISSN
9781836209607 MWT17663878, 1836209606 17663878
LANGUAGE
English
NOTES

As quantum machine learning (QML) continues to evolve, many professionals struggle to apply its powerful algorithms to real-world problems using noisy intermediate-scale quantum (NISQ) hardware. This book bridges that gap by focusing on hands-on QML applications tailored to NISQ systems, moving beyond the traditional textbook approaches that explore standard algorithms like Shor's and Grover's, which lie beyond current NISQ capabilities. Youll get to grips with major QML algorithms that have been widely studied for their transformative potential in finance and learn hybrid quantum-classical computational protocols, the most effective way to leverage quantum and classical computing systems together. The authors, Antoine Jacquier, a distinguished researcher in quantum computing and stochastic analysis, and Oleksiy Kondratyev, a Quant of the Year awardee with over 20 years in quantitative finance, offer a hardware-agnostic perspective. They present a balanced view of both analog and digital quantum computers, delving into the fundamental characteristics of the algorithms while highlighting the practical limitations of todays quantum hardware. By the end of this quantum book, youll have a deeper understanding of the significance of quantum computing in finance and the skills needed to apply QML to solve complex challenges, driving innovation in your work

Mode of access: World Wide Web

Additional Credits