Before Machine Learning Volume 1 - Linear Algebra for A.I : The fundamental mathematics for Data Science and Artificial Inteligence
(2024)

Nonfiction

eBook

Provider: hoopla

Details

PUBLISHED
[United States] : Packt Publishing, 2024
Made available through hoopla
DESCRIPTION

1 online resource (151 pages)

ISBN/ISSN
9781836208945 MWT18016992, 1836208944 18016992
LANGUAGE
English
NOTES

In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field. As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance. This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios

Mode of access: World Wide Web

Additional Credits