Data Analysis : What Can Be Learned From the Past 50 Years
(2012)

Nonfiction

eBook

Provider: hoopla

Details

PUBLISHED
[United States] : Wiley, 2012
Made available through hoopla
DESCRIPTION

1 online resource

ISBN/ISSN
9781118018262 MWT18101108, 1118018265 18101108
LANGUAGE
English
NOTES

This book explores the many provocative questions concerning the fundamentals of data analysis. It is based on the time-tested experience of one of the gurus of the subject matter. Why should one study data analysis? How should it be taught? What techniques work best, and for whom? How valid are the results? How much data should be tested? Which machine languages should be used, if used at all? Emphasis on apprenticeship (through hands-on case studies) and anecdotes (through real-life applications) are the tools that Peter J. Huber uses in this volume. Concern with specific statistical techniques is not of immediate value, rather, questions of strategy - when to use which technique - are employed. Central to the discussion is an understanding of the significance of massive (or robust) data sets, the implementation of languages, and the use of models. Each is sprinkled with an ample number of examples and case studies. Personal practices, various pitfalls, and existing controversies are presented when applicable. The book serves as an excellent philosophical and historical companion to any present-day text in data analysis, robust statistics, data mining, statistical learning, or computational statistics

Mode of access: World Wide Web

Additional Credits